Commercial Application of Regenesys™ Flow Battery Technology

Presented by:

Joe Hoagland & Mick Ray

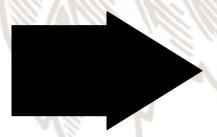
ESA Conference

April 26, 2001

Public Power Institute

- Educate and promote the role of public power in the Utility market place.
- Promote and develop new technologies that sustain the environment and provide competitive priced reliable sources of electrical generation and transmission.

PPI Bridges the Gap


Research and Development

Deployment

Universities, labs, etc.

PPI

Private enterprise

RD³ = Research Development, Demonstration & Deployment

Why TVA's Interest in Energy Storage?

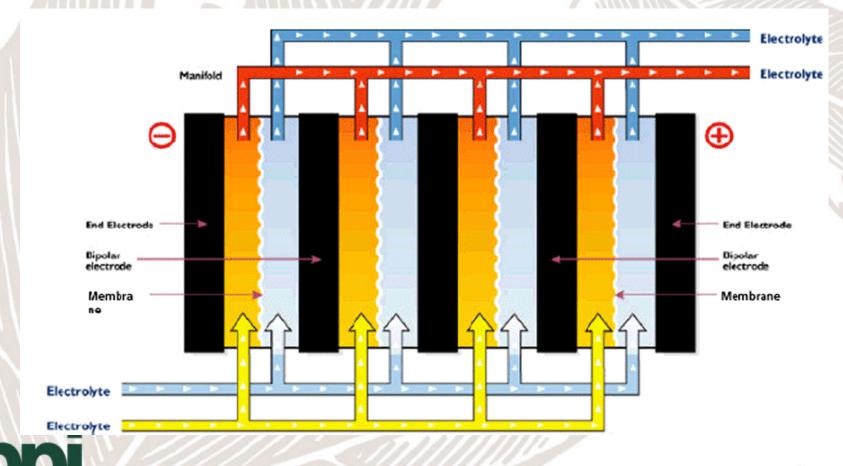
- Alternative to natural gas fired CTs.
- Alternative for frequency regulation.
- Need to level the loads on TVA generation.
- Meet growing customer needs for improved power quality and reliability.
- Need to more effectively utilize renewable energy sources

Technologies Considered

- Regenesys
- Vanadium Redox Battery (VRB)
- Powercell Zinc Flow Battery
- ZBB Zinc Bromide Battery

Common Attributes

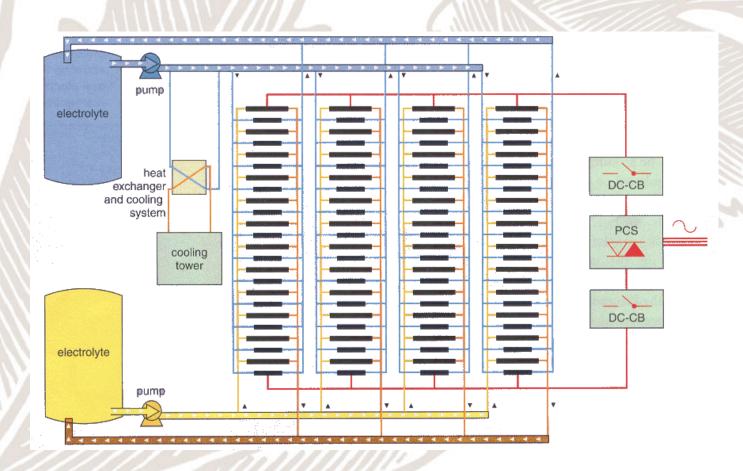
- Electrolytes stored at any charge for long periods.
- Power capability independent of storage capacity
- Electrolyte separation required
- Use of bipolar stacks
- Maximized electrode surface Area


Why choose the Regenesys technology?

- Potential for 10 100MW power capability
- Multiple system benefits
- Large storage capacity
- Inexpensive electrolyte materials
- Well developed production system

RegenesysTM Bipolar Cells

public power institute


RegenesysTM XL Module

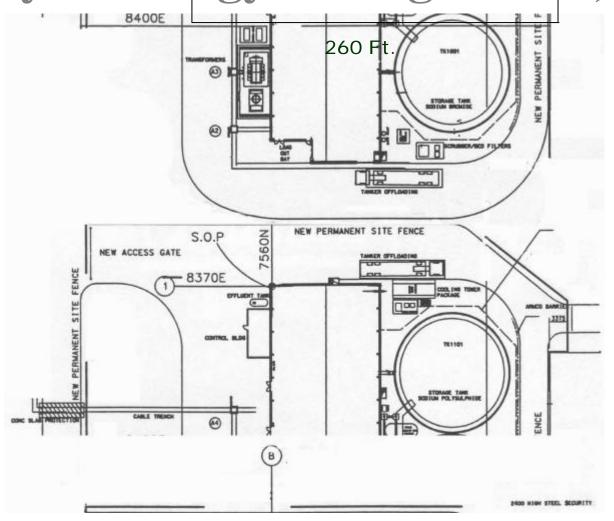
RegenesysTM Module Array

Benefits to TVA system

- Provide a less volatile electricity market place.
- Provide premium uninterruptible power to customers.
- Improve transmission line dynamic and voltage stability.
- Manage the flow of power across transmission infrastructure and remove congestion.
- Provide power systems the ability to regulate power system frequency.
- Improve the value of non-dispatchable renewable
 resources like wind and solar.

TVA System Advantages

- Delay or eliminate need to upgrade substations or lines (increased voltage, reconductor, etc..).
- Delay or eliminate need for new lines or substations
- Sell or provide arbitrage services?
- Sell or provide frequency regulation service?


Primary functions of the planned Regenesys Reference Plant

- 12 MW, 120MWh nominal plant
- UPS at 6 MW for 3-4 hours
- Arbitrage capability
- Voltage and frequency support

Footprint of the Little Barford RegenesysTMEnergy Storage Plant, UK

300 Ft.

Current status at Little Barford March 2001

Discharge Control/Mitigation

- Fugitive gases
 - redundant carbon filters and monitoring stations
- Cooling water discharge
 - local treatment plant
- Non hazardous solid wastes
 - Sold locally or removed by truck to appropriate facility

Plant Siting

- "Locations" near substations
- Reliability improvement
- Avoided transmission construction costs
- Need for premium power
- Evaluated sites near preferred locations

Licensing & Permits

- Environmental Assessment
- FONSI
- Clean Air Act Pre-construction permit
- Water Pretreatment permit?

Emergency Plan - EPA

- Reference 40 CFR 68
- Plan must be generated under general duty clause
- Plan submittal is not required

Hazop - OSHA

- Reference 29 CFR 1910.119
 - Process Safety Management of Highly Hazardous Chemicals
- Plan must be generated under general duty clause

Regenesys Project Interfaces

ABB TVA Operation **Suppliers** Engineering TVA **TPS Power Conversion System** Switchyard Design/ Procurement/Installation **TVA Project** Management NPS Innogy Overall design Permits Procurement of Engineered material/ AE Equipment Site Management Module Supply Site Procurement **Electrolyte Supply** Subs TVA PPI Operator Startup & Test Limited Engineering Review public power institute Emergency Planning

Regenesys Schedule Milestones

•		2001	2002	2003
4	Environmental Assessment Complete	Early May		
•	Public Review	Late June		
•	Permits Complete	Late June		
1	Initial Design Review Complete	Late June		E NEEMIN
•	Foundation Design Package Issued	Late June	18 18 18	
	TVA Plant Design Complete	November	1. 11.	1 30
•	PCS Design Complete	July	Will.	- 14
1.	PCS Installed		February	
•	Substation Design Complete		February	
1	Plant Construction Complete	10/100	July	
1.	Substation Upgrade Complete		July	
1 /	PCS Testing Complete	//////	October	
1.	Plant Testing Complete - Plant Hand-over			Janua

January